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ABSTRACT  

We describe the operation and results of our first generation zero field optically pumped magnetometer (OPM) 
developed for biomedical applications. The OPM technology is one of the most promising non-cryogenic candidates to 
replace superconducting quantum interference device (SQUID) magnetometers in key areas of biomagnetism. The first-
generation sensors are designed to transition OPM technology from a physics laboratory to researchers in the medical 
community. The laser and optical components are tightly integrated inside the sensor package, and the sensor is tethered 
to a dedicated electronics signal processing unit that enables automated and standalone operation inside a magnetically 
shielded room. 
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Magnetoencephalography, and Magnetocardiography. 
 

1. INTRODUCTION 
The high sensitivity of superconducting quantum interference device (SQUID) magnetometers has enabled the field of 
Biomagnetism since its inception in the 1970s [1]. However, practical and cost constraints originating from cryogenic 
nature of the SQUIDs has impeded widescale adoption of the biomagnetic technologies.  

A zero-field OPM with nearly 10 fT/√Hz level sensitivity was demonstrated as far back as in 1969 [2]. The subsequent 
discovery of alkali spin-exchange relaxation suppression in near-zero magnetic field environment provided the 
fundamental breakthrough necessary for miniaturization of zero field OPM technology [3]. Landmark work by Romalis 
and coworkers demonstrated OPM with sub-femtotesla level sensitivity using spin-exchange suppression in low 
magnetic fields [4]. More recently, development of integrated sensor packages [2], [5], [6] and head-to-head comparison 
between zero field OPMs and SQUIDs in a clinical setting have highlighted OPMs as a truly viable alternative to 
cryogenic technologies in many important clinical applications [5]–[9].  

Here we describe the development of a fully integrated and automated zero field optically pumped magnetometer 
(QZFM) that can be used by the medical research community and other non-specialists in this field.  

2. OVERVIEW 
The basic architecture of QZFM is the same as that outlined in the Ref. [2], [10], [11] , and it utilizes zero-field level 
crossing resonance (Hanle) for operation. Figure 1 shows a schematic representation of sensor head.  

A 795 nm, single mode vertical cavity surface emitting laser (VCSEL) resonant with the D1 line of 87Rb is used for 
optical pumping and resonance detection. The optical output power of the laser is roughly 200 µW. The VCSEL is 
mounted on an electrically heated baseplate, and the temperature of the laser is stabilized at a mK level. The laser 
temperature and the laser injection current are controlled to precisely adjust the optical power and wavelength of the 
laser using digital feedback loops. The laser light is circularly polarized with a quartz waveplate, and the beam is 
collimated with a plano-convex lens.  The collimated light beam is reflected 90 degrees using a prism and is then passed 
through a 3x3x3 mm3 alkali vapor cell containing 87Rb and a mixture of buffer gases to reduce rubidium relaxation from 
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– FWHM) of the zero-field resonance is around 30 nT. 

To remove technical 1/f noise and to maximize the slope of the signal around zero field value, phase-sensitive lock-in 
detection is utilized. The atoms in the vapor cell are subjected to an oscillating magnetic field at 923 Hz which 
modulates the resonance. The modulated signal is synchronously demodulated using a lock-in amplifier producing an 
output that has an anti-symmetric Lorentzian line shape as seen in Fig. 2. The output of the lock-in amplifier has a 
maximum slope at zero field and functions as the raw analog output of the magnetometer.  

The sensitive axis of the magnetometer is defined by the direction of the modulation field (projected on a plane 
perpendicular to the light beam). To make the magnetometer simultaneously sensitive to two orthogonal axes 
(perpendicular to the light beam), we apply two separate modulation fields (same frequency, 90 deg. phase offset) using 
separate orthogonal coils. Applying simultaneous modulation fields reduces the sensitivity in both axes by roughly 30%.  

The residual magnetic field in a typical magnetically shielded room (MSR) is around 50 nT or lower. Because zero field 
OPMs require absolute zero field environment to operate, external field coils are necessary to cancel out any residual 
magnetic fields. To simplify the setup of QZFMs, we integrate field cancellation coils with the sensor package. A set of 
flexible three axis coils centered around the vapor cell is mounted over the sensor housing, and automated field-zeroing 
algorithms are used to cancel out any residual fields around the vapor cell. The field zeroing procedure is repeated 
whenever the direction or the magnitude of magnetic field changes by more than 1 nT or when the magnetometer 
orientation changes. 

In QZFM, the internal coils are designed to compensate residual magnetic fields up to 50 nT. The primary limitation on 
the magnitude of the residual that can be canceled using internal coils comes from the stability and the noise 
performance of the internal coil drivers, as well as the inhomogeneity of the internal coils. The width of the zero-field 
resonance in QZFM is 30 nT. Therefore, transverse magnetic field gradients greater than ~10 nT over the length 
dimension of the vapor cell (3 mm) can substantially broaden the resonance width and degrade magnetometer 
performance.  

3. MULTICHANNEL OPERATION AND CROSS-TALK 
The QZFM is designed for multi-channel systems with high channel counts. Because the magnetic modulation signal 
used for lock-in detection can be picked up by adjacent sensors, we modulate all the sensors with a common drive signal 
to minimize interference. An electronics module designated as the ‘Master’ generates the modulation signal and 
distributes it to all other electronics modules designated as the ‘Slaves.’ Although deriving the modulation signals from a 
common drive resolves aliasing type effects, crosstalk effects are not fully removed by this procedure. Because the 
sensitive axis is defined by the direction of the modulation field, the modulation fields from adjacent sensors can 
superimpose on a sensor’s primary modulation field and thereby change the direction of the sensitive axis. Results from 
our preliminary experiments suggest such effects are at a few percent level when adjacent sensors are separated by >2-
cm. The sensitivity of the magnetometer also depends on the amplitude of the modulation field. Superimposition of 
modulation fields from adjacent sensors also can also change the net amplitude/phase of modulation field experienced by 
a sensor, thereby changing the absolute sensitivity/accuracy of the sensor. Lastly, another cross-talk type effect that 
arises comes from the DC compensation coils on the sensor used for field zeroing. The internal three-axis field 
compensation coils used for field zeroing can produce a DC bias field that can be sensed by an adjacent sensor. Thus, 
running independent internal field zeroing algorithm in one sensor can push an adjacent sensor outside its operating field 
range. To alleviate this problem, we simultaneously run field zeroing procedure on all the sensors. Simultaneous field-
zeroing collapses the overall system level DC field configuration in a way that each sensor experiences a zero-field 
environment to the greatest extent possible. The downside of this approach is that even if the position of a single sensor 
is reconfigured, the automated field zeroing procedure may have to be repeated for all the sensors.  
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addition, the QZFM is not hermetically sealed at present, and degradation of the surface quality of internal optics may 
place further constraints on the sensor lifetime.  

Figure 7 shows the low-frequency performance of QZFM (data courtesy Joonas Iivanainen and Rasmus Zetter, Aalto 
University). The data was collected by recording the output of free running QZFMs inside a three-layer MSR. From the 
Figure 7(c), an upper bound on the intrinsic drift of QZFM is ~2 pT/hr. Figure 7 (b) and (c) show comparable drift in 
SQUID and OPM channels, potentially indicating that the measured drift may be due to changes in the gradient field.  

A number of research groups have collected data MCG and MEG data using QZFM validating the technology in a 
clinical setting [5], [12], [13].  Figure 8 shows MEG recordings collected at the University of Wisconsin Madison 
(courtesy Prof. R. T. Wakai, University of Wisconsin) using an early version of the QZFM prototypes. A somewhat 
lower absolute sensitivity of QZFMs (10 fT/√Hz) compared with SQUIDs (3-5 fT/√Hz) is compensated by the smaller 
stand-off distance and proximal placement of the OPMs to the subject, providing equivalent or higher signal-to-noise 

ratios compared to SQUID systems.  

6. CONCLUSION 
We have demonstrated fully integrated, stand-alone zero field OPM sensors and shown that this technology is a truly 
viable alternative to SQUIDs sensors in key areas of biomagnetism such as fetal and adult MCG and MEG. The absolute 
sensitivity of our sensors is comparable to low-temperature SQUID devices. By integrating the laser diode and other 
optical components directly inside the sensor package, the overall robustness of the device is significantly improved 
allowing OPMs to be incorporated in routine clinical applications. In addition, integrating the laser diode with the sensor 
package has also greatly improved the sensor noise properties especially in the low-frequency domain. Furthermore, the 
addition of field zeroing coils inside the sensor has removed the need for external field zeroing infrastructure allowing 
the sensors to be used as stand-alone units inside a typical shielded room. We have also addressed many technical 
constraints enabling zero-field OPM operation in the multi-channel configuration for MEG type imaging applications. 
The non-cryogenic nature of OPM technology, combined with a highly simplified design is expected to provide a step 
change in technology for future biomagnetism applications.  
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